Hall Ticket Number:

Code No.: 1208S

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. I Year II-Semester (Supplementary) Examinations, Dec./Jan.: 2015-16

Engineering Physics – II (For CSE, ECE, and IT Branches)

Time: 3 hours

Max. Marks: 70

Note: Answer ALL questions in Part-A and any FIVE questions from Part-B

Part-A (10 X 2=20 Marks)

- 1. Explain the significance of wave function in wave mechanics.
- 2. A beam of X-rays are incident on an ionic crystal with lattice spacing 0.313nm. Calculate the wavelength of X-rays if the first order Bragg's reflection takes place at a glancing angle of 30°.
- 3. Define the terms Drift Current and Diffusion Current.
- 4. Explain the concept of effective mass in intrinsic semiconductor.
- 5. Distinguish the solids on the basis of band theory.
- 6. The critical values of magnetic field are 2 x 10⁵A/m and 1 x 10⁵A/m for niobium at 0K and 8K. Determine its critical temperature.
- 7. Write the postulates of special theory of relativity.
- 8. What is the velocity of π^- mesons whose observed mean life is 2.5 x 10⁻⁷sec. The proper life of these π^- mesons is 2.5 x 10⁻⁸sec.
- 9. Discuss the chemical properties of Nano Materials.
- 10. Distinguish bulk, thin and nano materials.

Part-B (5X10=50 Marks)

 11. a) Obtain Schrodinger time independent wave equations for matter waves. b) Explain the experimental method to determine the lattice constant 'α' by powder diffraction method. 	[6] [4]
12. a) What is Super Conductivity? Explain the general properties of Super conductors.b) Show that the Kronig-Penney model leads to energy band structure in solids.	[6] [4]
13. a) Explain the Conductivity in Intrinsic and Extrinsic Semi Conductors and obtain the expressions.b) Explain the working of photo diode and discuss for its efficiency and Responsivity.	[5] [5]
14. a) What is Galelian Transformation? Derive Galilian transformation equations.b) What is relativistic mass? Derive the relation for relativistic mass.	[5] [5]
15. a) Describe with a neat sketch how nano particles are prepared employing the Chemical Vapor Deposition.b) Write the applications of carbon nano tubes and describe the ball milling method.	[6] [4]
16. a) Explain the point defects and line defects in crystals.b) What is Hall Effect and derive expression for Hall Coefficient.	[5] [5]
 17. Answer any two of the following: a) Describe the working principle and characterization of nanomaterials by TEM. b) Derive the expression for E = mc² c) Explain the construction and working of Solar Cell. 	[5] [5] [5]
